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Abstract

A numerical investigation for three-dimensional natural convection inside horizontal concentric annulus with open
ends and conditions of either adiabatic or isothermal outer cylinder surface is made by a zonal grid approach, which
extends the outlet boundary from the open end of the annuli to a far enough outside position that can be reasonably
specified with the ambient flow properties. Computational result reveals that the maximum inner cylinder surface
temperature occurs right at the top of the inner cylinder. It is also found that the inner cylinder surface temperatures
decrease towards the outlet plane for the adiabatic case, while remains relatively constant for the isothermal case. The
variation of the inner cylinder surface temperatures is smaller for the isothermal case as compared to the adiabatic

case. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Natural convection inside horizontal annulus with
open ends occurs in many engineering applications. A
typical example is the underground power cable. Heat is
generated from the electrical resistance of the power
cable and the heat dissipation process in the annulus
relies on the natural convection heat transfer from both
open ends of the conduit, which penetrate onto the
manhole surfaces. The heat dissipation rate is deter-
mined from the ventilation stemmed from natural con-
vection and will affect the lifetime of the power cable.

Owing to the symmetric nature of the flow field with
respect to the two open ends and to a vertical plane
crossing the center of the cylinders, the computational
domain is schematically shown in Fig. 1. In addition to
the convection heat transfer, a more comprehensive
thermal model for the configuration investigated should
include the thermal radiation inside the enclosure.
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However, the present study is focused on the convection
problem only. The additional complication due to con-
siderations of thermal radiation in the enclosure is re-
served for future study.

The boundary conditions for this problem are as
follows. Either adiabatic or isothermal condition is given
on the outer cylinder surface, while on the inner cylinder
a constant heat flux is given. For the isothermal con-
dition, the outer cylinder surface is maintained at T
(i.e., 300 K). No slip condition is given to all the three
components of the velocity on the outer and inner cyl-
inder surfaces. Since no flow crosses the circumferen-
tially (or longitudinally) symmetric plane, the angular
(or axial) velocity vanishes on that plane. The angular
(or axial) derivatives of the remaining velocity compo-
nents and temperature also vanish on the circumferen-
tially (or longitudinally) symmetric plane. Unlike the
vertical configuration of eccentric annuli in which the
fully developed thermal boundary conditions may be
achievable [1], the boundary conditions at the open end
of the present problem are much more troublesome.
Although this plane is named as the outlet (see Fig. 1)
in consideration of the heat dissipation route in the
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Nomenclature
Gy specific heat capacity
Dy hydraulic diameter
Ec Eckert number, V**/ (G anDh/krer)
Fr Froude number, V*/,/g*D;;
g gravitational acceleration
g/ contravariant metric tensor
h convective heat transfer coefficient
J Jacobian
k thermal conductivity
Pr Prandtl number, v* /o
P hydraulic pressure, (p* + piyg V") /i V™
q heat flux
¢ curvilinear coordinate
R? source term
Ra Rayleigh number, g*f*D;’ AT* /v*o*
Ra° modified Rayleigh number,
g BD; g, /v ek
T temperature
(u,v,w) physical velocity, (u*,v*,w*)/V*
1 contravariant velocity
V* characteristic velocity, o*/D;;
(x,y,z)  Cartesian coordinates, (x*,y*,z*)/Dj,

Greek symbols

o thermal diffusivity

p thermal expansion coefficient

re diffusion coefficient

0 non-dimensionalized temperature,
(T* ~ T2 /gDy k)

u VIScosity

v kinematic viscosity

P density, p*/p;y

@ energy dissipation term; also dependent
variable

¢ azimuthal angle

Subscripts

i inner cylinder

nb neighboring grid points

o outer cylinder

P main grid point

ref reference state (at atmospheric pressure
and room temperature)

w wall

Superscripts

- averaged quantity

* dimensional quantity

conduit, it consists of inflow (fresh flowing fluid) and
outflow (heated flowing fluid) at the same plane (see Fig.
4). An approach used in the simulations of the non-
cavity type, buoyancy-induced flows is the “zonal grid”
approach [2,3] which extends the computational domain
outside the outlet plane so that the boundary conditions
can be reasonably specified with the ambient flow
properties. Typical examples can be found in [4,5]. Al-
though this approach requires enormous computations
for three-dimensional problems, it provides more reli-
able results among existing approaches. In this work, the
zonal grid approach is adopted to resolve the problem of
the outlet boundary conditions.

Many theoretical and experimental studies on natural
convection in horizontal concentric annuli have been
carried out. In most of these studies, a two-dimensional
model was used in which the annuli are assumed to be
infinitely long and coupled with thermal boundary
conditions on the cylinder surfaces specified, as either
with two constant wall temperatures or one with con-
stant wall temperature while the other with constant
wall heat flux (including adiabatic surface) [6-14].
However, the boundary conditions on the cylinder sur-
faces do not permit the solution of a two-dimensional
natural convection within the transverse plane in the
present work. Three-dimensional formulation has to be
used to model the problem. There have been few three-
dimensional investigations of natural convection in

concentric annuli between two horizontal cylinders, ex-
cept with the configuration of cavity type [15,16]. A
comprehensive literature survey has revealed that pub-
lished work is largely non-existent on three-dimensional
concentric annuli between two horizontal cylinders,
where their geometric configurations possess open ends
(not annular cavity). The scope of this work is to in-
vestigate numerically the flow and thermal fields of
laminar natural convection in the geometric configura-
tion schematically shown in Fig. 1.

Since the thermal boundary conditions at the inner
cylinder surfaces are specified in terms of heat fluxes
instead of temperatures in the present work, a modified
Rayleigh number is defined as follows:

* 5* D*3
= £k g0y k) (1

ref

Raa

As pointed out by Kuehn and Goldstein [11], an onset of
transition from laminar to turbulent regimes starts near
Ra=4x10% for gases in a concentric annulus of
D,/D; = 2.6. Moreover, a study by Labonia and Guj
[13] indicated that chaotic flows were observed in the
range of 0.9 x 10° <Ra <3.37 x 10° for a concentric
annulus of D,/D; = 2.36. However, their conclusions
were drawn from the experimental observations and
based upon the cases associated with the constant tem-
perature differences between the outer and inner cylin-
ders. Kumar [9] made a numerical investigation using a
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Fig. 1. Illustration of the computational domain and zonal grid distribution: (a) overall view; (b) zoom-in view near the interface of the

two zones.

two-dimensional model for an infinitely long, horizon-
tal, concentric annulus where the inner cylinder was
specified by a constant heat flux and the outer cylinder
was isothermally cooled. He found that the critical Ra®
above which the numerical results failed to converge
were 3.1 x 10° and 3 x 10° at D,/D; = 1.5 and 2.6, re-
spectively. Kumar also recognized that it was hard to
judge whether the flow would become oscillatory or
three-dimensional beyond the critical Ra® for a given
ratio of D,/D;. The present work, which is essentially a
three-dimensional problem with the medium of air
(Pr = 0.7), encounters the same convergence difficulty
beyond Ra’ = O(107), which may imply an onset of
transition from steady laminar to chaotic or even tur-
bulent flows. Here, the case of Ra’ = 10°, which may

lead to distinct temperature variations on the inner
cylinder surface, is calculated for demonstration.

2. Mathematical model

The flow pattern of interest here necessitates the
solution of three-dimensional fully elliptic type of partial
differential equations, which describe the natural con-
vection flow field. Considering the steady-state flow sit-
uation, the governing equations in Cartesian coordinates
read:

0 0

s (ow) 5 (90) 52 (pw) =0, @)
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o\ (o), (o), (o, @y
X dy 0z dy Ox
2

and
=uwvelq,. (8)

Note that the Boussinesq approximation usually made
in the formulation of the natural convection is not
adopted here and the density is determined using the
ideal gas law. The reason of using the ideal gas law ra-
ther than Boussinesq approximation for density deter-
mination is that the Boussinesq approximation is not
valid in case of high temperature difference, which may
arise when the Rayleigh number exceeds a critical value.
Nevertheless, the maximum temperature rise in the
present study is only 15 K (as can be observed from Fig.
6 for the adiabatic case) and therefore the Boussinesq
approximation can be used as well.

(vL)x107

Ra=10"

O predictions by Fusegi et al.
present predictions

. T T 1 ) x/L
0 0.25 0.5 0.75 1

Fig. 2. Velocity vector profile at the middle height in the
symmetric plane (y/L = 0.5 and z/L = 0.5).
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Fig. 3. Illustration of the selected: (a) transverse sections; (b)
longitudinal sections.

3. Numerical method
The above governing equations can be cast into the

following general form, which permits a single algorithm
to be used.

d L3 (00,
o @) =5 (150 ) e o)

Ox;
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Fig. 4. Velocity vector plots at selected transverse and longitudinal sections.

To facilitate the handling of complex geometry of the
present problem, the body-fitted coordinate system is
used to transform the physical domain into a compu-
tational domain, which is in a rectangular coordinate
system with uniform control volumes. Transformation
of Eq. (9) to the body-fitted coordinates leads to

0P

) . )
JpVid) =
(JpV’' @) o

% ¥ (10)

<Jgfkr¢ ) +JR?,

where ¢/ are the curvilinear coordinates (¢, n,(), the
Jacobian
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Fig. 4 (continued).

J= XeVnZe +Xy,ng¢ +nyCfZﬂ = X(WpZe — XeViZg — Xpeze, V = l [u(ylzf 7);52[) + U(XEZC — x525) + W(xiyi — xfyz)}
J < c=C c cSE )
V7 is th i i 1
is the contravariant velocity (U, V, W) W = 7 [u(ygz,, — wze) + v(xgze — xezy) + w(xey, — xﬂyi)],

1
U= j [u(yﬂzl - yCZﬂ) + U(XZZn - X,,Z;) + W(X,ny; - x{y"l):lv gjk is the metric tensor
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Fig. 5. Velocity vector plots near the end of the annulus
(z=30.6).
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The grid layout is constructed by connecting the grid
points in each transverse plane, which are generated by
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Fig. 6. Temperature contours at selected longitudinal sections.

solving the two-dimensional elliptic type of partial dif-
ferential equations governing the distribution of the grid
points [17]. Numerical calculation of Eq. (10) is per-
formed using the control-volume based finite difference
procedure. The discretized governing equations are
solved on a non-staggered grid system in association
with the SIMPLEC algorithm [18] and QUICK scheme
[19].

In the use of the zonal grid approach [4,5], the com-
putational domain is extended outside the outlet plane
and is divided into two sub-domains of zones I and II, as
schematically illustrated in Fig. 1. The inner and outer
diameters of zone [ are 0.1 and 0.2 m, respectively, and its
length is 3 m (equivalent to 30D;’s). Computation of a
further longer annulus is not permitted due to the limi-
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Fig. 7. Temperature contours near the end of the annulus
(z =30.6).

tation of the available computational facility. Zone II is
constructed by a cube with side length of 20D;’s to assure
its boundary conditions being reasonably specified by the
ambient properties. The outer cylinder is flush with the
adiabatic solid wall while the inner cylinder extends to
the free boundary. The boundary conditions for zone I
have been stated in Section 1 and will not be repeated
here. The boundary conditions of zone II are as follows.
On the surface of the inner cylinder, the same boundary
conditions as specified for zone I are used. On the adia-
batic solid wall, the no-slip condition and adiabatic wall
are specified. The condition of zero normal gradients is
met on the symmetric plane except for the normal velocity
component, which vanishes naturally. On the free
boundaries, the normal gradients of all the dependent
variables except for the temperature are set to be zero. The
temperature conditions at the free boundaries are speci-
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o

fied as follows: When the flow at any such boundary is
leaving the domain, the normal temperature gradient is
taken as zero. However, when the flow comes into the
domain, its temperature is assigned to that of the ambient.

The treatment of the interface of the two zones fol-
lows the overlapping grid method [2]. Starting with
guessed values, solutions in zone I together with the
overlapped region are updated by one sweep of itera-
tion. The updated solutions at the outlet plane of zone |
are then interpolated by bilinear interpolation as the
boundary conditions of zone II. The solutions in zone II
are then updated by one sweep of iteration and are used,
in turn, to interpolate the values in the overlapped re-
gion, which provide the new boundary conditions for
the resolutions of zone I together with the overlapped
region. This completes a full solution cycle. In each
solution cycle, continuity of the dependent variables and
conservation of fluxes are preserved across the interface.
In fact, this is the key to the success of the approach.
The solution cycle is repeated until the convergence
criterion is satisfied. The convergence criterion is de-
scribed below.

The general form of the discretized governing equa-
tions can be written as
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nb
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Fig. 8. Azimuthal distributions of the inner cylinder surface temperatures at four longitudinal sections.
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where 7 is an arbitrary grid point in the computational
domain and N is the total number of grid points. When
22 <1.0 x 10 for each dependent variable @ in both
the two zones, the iteration process is convergent.

Illustration of the zonal grid distribution is sche-
matically shown in Fig. 1. Numerical tests revealed that
the maximum difference in mass inflow rate at the outlet
plane between 51 x 51 x 101 (radial x angular x axial)
and 61 x 61 x 121 grid meshes for zone I, while the
corresponding grid meshes for zone II are 21 x 41 x 21
(x x y xz) and 31 x 61 x 31, respectively, is less than
0.5%. Therefore, the former set of grid mesh is adopted
in the present work.

4. Results and discussion

To validate the computer model developed in this
work, a benchmark problem of the three-dimensional
natural convection in a differentially heated cubical en-
closure [20], which is schematically shown in Fig. 2, is
first calculated for the case of Ra=10° with a
51 x 51 x 26 uniformly distributed grid mesh. The cal-
culated result along the symmetric line (y/L = 0.5 and
z/L = 0.5) is presented in Fig. 2 and compared with the
result predicted by Fusegi et al. [20]. An excellent
agreement between the present calculation and the one
obtained by Fusegi et al. supports the validation of the
developed computer model.

Fig. 3 illustrates the section positions of the configu-
ration being studied. Both the adiabatic and isothermal
conditions for the outer cylinder surface are examined for
the conditions of r,/r; = 2 and Ra® = 10° to investigate
the natural convection heat dissipation inside the conduit.

Fig. 4 shows the velocity vector plots at selected
transverse and longitudinal sections for the examined
cases. Note that the results for sections A—A, B-B and
D-D are the vertical projections of the flow field and
therefore the ordinate is y, while the result for section C—
C is the horizontal projection of the flow field and
therefore the ordinate is x. The flow patterns for the two
cases are rather different. As observed from the velocity
vector plots on the longitudinal sections, there appear
secondary flows in all the six longitudinal sections for
both cases. The secondary flow of the adiabatic case is
stronger than that of the isothermal case. Further
downstream, the secondary flows evolve into counter-
rotating recirculation zones for the adiabatic case. An-
other interesting phenomenon can be observed from the
velocity vector plots on the transverse sections. For both
cases, the inflow paths are clearly observed in the
portion below the inner cylinder, whereas the outflow
paths are in the portion above. Such flow patterns result
obviously from the buoyancy effect, which can be ob-
served in thermal plume phenomena. This can also be
seen from the velocity vector plots at a distance slightly

outside the open end (i.e., in zone II) shown in Fig. 5, in
which the entrainment effect caused by the upward
motion of the buoyant flows can also be seen.

Fig. 6 displays the temperature contours at four se-
lected longitudinal sections along the annulus in zone I
(see Fig. 3 for the section positions), while Fig. 7 shows
the temperature contours at a distance slightly outside
the open end for the examined cases. It is observed that
higher temperature regions around the inner cylinder
surface locate in the upper portion. This can also be seen
from the azimuthal temperature distributions along the
inner cylinder surface shown in Fig. 8. As pointed out in
the above discussion of the flow pattern on the trans-
verse sections, the (hot) outflow is observed in the
portions above the inner cylinder, whereas the (cold)
inflow in the portions below. The temperature contours
at a position slightly outside the annulus, as shown in
Fig. 7, consistently reflect the above observation.

Fig. 8 shows the azimuthal temperature distributions
along the inner cylinder surface at four selected longi-
tudinal sections. It is clearly seen that the highest tem-
perature occurs right at the top of the inner cylinder (i.e.,
¢ = 0°). Also from the figure it is observed that the inner
cylinder surface temperatures decrease towards the
outlet plane for the adiabatic case, while remains rela-
tively constant for the isothermal case. In addition, the
variation of the surface temperatures is smaller for the
isothermal case. The maximum inner cylinder surface
temperature of the isothermal case is lower than that of
the adiabatic case by about 11 K.

5. Conclusions

Horizontal concentric annulus with open ends and
conditions of either adiabatic or isothermal outer cyl-
inder surface are examined with a three-dimensional
formulation of natural convection heat transfer and by a
zonal grid approach, which extends the outlet boundary
from the open end of the conduit to a far enough outside
position that can be reasonably specified with the am-
bient flow properties. It is found that higher tempera-
tures around the inner cylinder occur in the region near
its top. The maximum inner cylinder surface tempera-
ture occurs right at the top of the inner cylinder. The
inner cylinder surface temperatures decrease towards the
outlet plane for the adiabatic case, while remains rela-
tively constant for the isothermal case. The variation of
the inner cylinder surface temperatures is smaller for the
isothermal case, as compared to the adiabatic case.
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